Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(cyanato-кN)tetrakis(2,6-dimethyl-pyrazine- κN^{4})nickel(II)

Susanne Wöhlert,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-
Strasse 2, 24118 Kiel, Germany
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 15 June 2012; accepted 20 June 2012

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.039 ; w R$ factor $=0.102$; data-to-parameter ratio $=18.4$.

Reaction of nickel(II) chloride with sodium cyanate and 2,6dimethylpyrazine leads to single crystals of the title compound, $\left[\mathrm{Ni}(\mathrm{NCO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]$. The nickel(II) cation is located about a centre of inversion and is octahedrally coordinated by two cyanate anions and four 2,6-dimethylpyrazine ligands, forming discrete complexes.

Related literature

For the background to this work relating to complexes with thiocyanato and selenocyanato and N-donor ligands, see: Boeckmann \& Näther (2010); Wriedt et al. (2009); Boeckmann et al. (2010).

Experimental

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]$
$M_{r}=575.33$
Monoclinic, $C 2 / c$
$V=2808.9(3) \AA^{3}$
$Z=4$
$a=24.932$ (2) A
Mo $K \alpha$ radiation
$b=8.4963$ (3) A
$\mu=0.73 \mathrm{~mm}^{-1}$
$c=18.1748$ (13) \AA
$T=293 \mathrm{~K}$
$\beta=133.148$ (7) ${ }^{\circ}$
$0.07 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32;
Stoe \& Cie 2008)
$T_{\text {min }}=0.888, T_{\text {max }}=0.969$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 182$ parameters
$w R\left(F^{2}\right)=0.102 \quad$ H-atom parameters constrained
$S=1.01$
3341 reflections

8293 measured reflections 3341 independent reflections 2516 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

$$
\begin{aligned}
& 182 \text { parameters } \\
& \mathrm{H} \text {-atom parameters constrained } \\
& \Delta \rho_{\max }=0.30 \mathrm{e}_{\AA}^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

Ni1-N1	$2.0396(19)$	Ni1-N20	$2.1983(15)$
Ni1-N10	$2.1475(17)$		

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL.

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr. Bensch for access to his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2488).

References

Boeckmann, J. \& Näther, C. (2010). Dalton Trans. 39, 11019-11026.
Boeckmann, J., Wriedt, M. \& Näther, C. (2010). Eur. J. Inorg. Chem. pp. 18201828.

Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wriedt, M., Jess, I. \& Näther, C. (2009). Eur. J. Inorg. Chem. pp. 1406-1413.

supplementary materials

Acta Cryst. (2012). E68, m970 [doi:10.1107/S1600536812027985]

Bis(cyanato- κN)tetrakis(2,6-dimethylpyrazine- κN^{4})nickel(II)

Susanne Wöhlert, Inke Jess and Christian Näther

Comment

Recently we have reported on the synthesis, structures and properties of new coordination polymers based on paramagnetic transition metals, small-sized anionic ligands such as thiocyanato and selenocyanato, and N-donor ligands. In the course of these investigations we found that new coordination compounds with bridging anionic ligands can be prepared by thermal decomposition of suitable precursor compounds, in which the anionic ligands are only terminally coordinated (Wriedt et al., 2009 and Boeckmann \& Näther, 2010). In further investigations we also have shown that even metal formate coordination compounds can be prepared by this method (Boeckmann, Wriedt \& Näther, 2010). In our current investigations we tried to prepare similar compounds based on transition metal cyanates with 2,6-dimethylpyrazine as a neutral co-ligand. Therefore, we have reacted nickel(II) chloride with sodium cyanate and 2,6-dimethylpyrazine which resulted in the formation of crystals of the title compound that were identified by single crystal X-ray diffraction.

The asymmetric unit of the title compound consists of one nickel(II) cation, which is located on a centre of inversion, one cyanato anion and two 2,6-dimethylpyrazine ligands in general positions (Fig. 1). In the crystal structure each nickel(II) cation is coordinated by two terminal N -bonded cyanato anions and four 2,6-dimethylpyrazine ligands into discrete complexes, and the coordination polyhedra around the Ni cations corresponds to a slightly distorted octahedra. The anionic ligands are trans to each other and because of sterical crowding the 2,6-dimethylpyrazine ligand is coordinated via the nitrogen atom that is not neighbouring the methyl groups. The $\mathrm{Ni}-\mathrm{N}$ distances range from 2.0396 (19) \AA to 2.1983 (15) \AA with angles between 88.72 (6$)^{\circ}$ and 180° (Table 1). The shortest intermolecular distances between the nickel(II) cations is 8.4963 (3) \AA.

Experimental

Nickel(II) chloride hexahydrate $\left(\mathrm{NiCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}\right)$, sodium cyanate (NaNCO) and 2,6-dimethylpyrazine were obtained from Alfa Aesar. All chemicals were used without further purification. $0.15 \mathrm{mmol}(35.5 \mathrm{mg}) \mathrm{NiCl}_{2} \times 6 \mathrm{H}_{2} \mathrm{O}$ and 0.3 mmol (19.5 $\mathrm{mg}) \mathrm{NaNCO}$ were reacted in $0.6 \mathrm{mmol}(65 \mu \mathrm{~L})$ 2,6-dimethylpyrazine. Green shaped single-crystals suitable for structure determination were obtained after one week at room temperature.

Refinement

$\mathrm{C}-\mathrm{H} H$ atoms were positioned with idealized geometry (methyl H atoms were allowed to rotate but not to tip) and were refined isotropically with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})(1.5$ for methyl H atoms) and $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ for aromatic and $0.96 \AA$ for methyl H atoms using a riding model.

Computing details

Data collection: X-AREA (Stoe \& Cie, 2008); cell refinement: X-AREA (Stoe \& Cie, 2008); data reduction: X-AREA (Stoe \& Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure:

SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008).

Figure 1

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
Symmetry code: $\mathrm{i}=-\mathrm{x}+3 / 2,-\mathrm{y}+3 / 2,-\mathrm{z}+1$.

Bis(cyanato- κN)tetrakis(2,6-dimethylpyrazine- κN^{4})nickel(II)

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCO})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\right]$
$M_{r}=575.33$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=24.932(2) \AA$
$b=8.4963$ (3) \AA
$c=18.1748(13) \AA$
$\beta=133.148$ (7) ${ }^{\circ}$
$V=2808.9(3) \AA^{3}$
$Z=4$
$F(000)=1208$
$D_{\mathrm{x}}=1.360 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8293 reflections
$\theta=2.7-28.0^{\circ}$
$\mu=0.73 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, green
$0.07 \times 0.04 \times 0.03 \mathrm{~mm}$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe \& Cie 2008)
$T_{\text {min }}=0.888, T_{\text {max }}=0.969$

> 8293 measured reflections
> 3341 independent reflections
> 2516 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.047$
> $\theta_{\max }=28.0^{\circ}, \theta_{\min }=2.7^{\circ}$
> $h=-25 \rightarrow 32$
> $k=-11 \rightarrow 10$
> $l=-23 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.102$
$S=1.01$
3341 reflections
182 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0632 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.30$ e \AA^{-3}
$\Delta \rho_{\min }=-0.40$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ni1	0.7500	0.7500	0.5000	$0.01887(11)$
N20	$0.64456(8)$	$0.8103(2)$	$0.34913(11)$	$0.0212(3)$
N10	$0.79329(8)$	$0.6983(2)$	$0.43337(11)$	$0.0231(4)$
C1	$0.68822(10)$	$0.4093(3)$	$0.46580(14)$	$0.0255(4)$
N1	$0.71677(9)$	$0.5219(2)$	$0.47971(13)$	$0.0275(4)$
N21	$0.50923(9)$	$0.8818(2)$	$0.15700(13)$	$0.0270(4)$
C10	$0.82299(10)$	$0.5593(3)$	$0.44444(15)$	$0.0261(4)$
H10	0.8239	0.4804	0.4807	0.031^{*}
C23	$0.62225(10)$	$0.9586(2)$	$0.31901(15)$	$0.0237(4)$
H23	0.6526	1.0401	0.3631	0.028^{*}
N11	$0.85370(10)$	$0.6399(3)$	$0.35157(14)$	$0.0364(5)$
C22	$0.55452(10)$	$0.9952(3)$	$0.22309(15)$	$0.0251(4)$
C20	$0.59907(10)$	$0.6966(3)$	$0.28228(14)$	$0.0239(4)$
H20	0.6130	0.5918	0.3002	0.029^{*}
O1	$0.65623(11)$	$0.2844(2)$	$0.45025(18)$	$0.0568(6)$
C11	$0.85283(11)$	$0.5294(3)$	$0.40292(15)$	$0.0312(5)$
C13	$0.79369(10)$	$0.8085(3)$	$0.38110(14)$	$0.0267(4)$

H13	0.7725	0.9060	0.3708	0.032^{*}
C12	$0.82493(11)$	$0.7812(3)$	$0.34183(16)$	$0.0330(5)$
C14	$0.88376(15)$	$0.3709(3)$	$0.4124(2)$	$0.0454(6)$
H14A	0.8580	0.3295	0.3464	0.068^{*}
H14B	0.8780	0.3006	0.4479	0.068^{*}
H14C	0.9350	0.3812	0.4490	0.068^{*}
C15	$0.82941(15)$	$0.9083(4)$	$0.2884(2)$	$0.0526(8)$
H15A	0.8799	0.9357	0.3276	0.079^{*}
H15B	0.8029	0.9994	0.2800	0.079^{*}
H15C	0.8082	0.8707	0.2234	0.079^{*}
C21	$0.53149(10)$	$0.7326(3)$	$0.18668(14)$	$0.0272(4)$
C25	$0.53126(11)$	$1.1627(3)$	$0.19022(17)$	$0.0341(5)$
H25A	0.5382	1.1915	0.1461	0.051^{*}
H25B	0.5604	1.2302	0.2483	0.051^{*}
H25C	0.4803	1.1738	0.1552	0.051^{*}
C24	$0.48127(12)$	$0.6054(3)$	$0.11260(18)$	$0.0405(6)$
H24A	0.4342	0.6160	0.0917	0.061^{*}
H24B	0.5019	0.5045	0.1437	0.061^{*}
H24C	0.4756	0.6143	0.0549	0.061^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	$0.01411(16)$	$0.02221(18)$	$0.01902(17)$	$-0.00050(14)$	$0.01083(13)$	$0.00029(14)$
N20	$0.0161(7)$	$0.0272(8)$	$0.0213(7)$	$0.0021(6)$	$0.0131(6)$	$0.0022(6)$
N10	$0.0158(7)$	$0.0312(9)$	$0.0196(7)$	$-0.0012(6)$	$0.0111(6)$	$-0.0006(6)$
C1	$0.0202(9)$	$0.0288(11)$	$0.0239(9)$	$0.0043(8)$	$0.0137(8)$	$-0.0008(8)$
N1	$0.0210(8)$	$0.0326(10)$	$0.0254(8)$	$0.0028(7)$	$0.0145(7)$	$0.0032(7)$
N21	$0.0194(7)$	$0.0364(10)$	$0.0244(8)$	$0.0039(7)$	$0.0147(7)$	$0.0044(7)$
C10	$0.0234(9)$	$0.0324(11)$	$0.0243(9)$	$0.0031(8)$	$0.0171(8)$	$0.0017(8)$
C23	$0.0181(8)$	$0.0290(10)$	$0.0244(9)$	$0.0022(7)$	$0.0146(8)$	$0.0021(8)$
N11	$0.0289(9)$	$0.0556(13)$	$0.0335(9)$	$0.0103(8)$	$0.0248(8)$	$0.0102(9)$
C22	$0.0179(8)$	$0.0344(11)$	$0.0270(9)$	$0.0061(8)$	$0.0169(8)$	$0.0062(8)$
C20	$0.0180(8)$	$0.0299(10)$	$0.0200(9)$	$0.0013(7)$	$0.0116(8)$	$0.0001(7)$
O1	$0.0535(11)$	$0.0307(10)$	$0.0848(15)$	$-0.0174(8)$	$0.0467(12)$	$-0.0082(9)$
C11	$0.0245(10)$	$0.0445(13)$	$0.0267(10)$	$0.0061(9)$	$0.0183(9)$	$0.0020(9)$
C13	$0.0204(9)$	$0.0361(11)$	$0.0240(9)$	$0.0012(8)$	$0.0153(8)$	$0.0037(8)$
C12	$0.0230(9)$	$0.0498(15)$	$0.0281(10)$	$0.0058(8)$	$0.0183(8)$	$0.0114(9)$
C14	$0.0521(14)$	$0.0546(16)$	$0.0491(14)$	$0.0189(12)$	$0.0422(13)$	$0.0102(12)$
C15	$0.0500(14)$	$0.0681(19)$	$0.0591(17)$	$0.0181(14)$	$0.0449(14)$	$0.0293(15)$
C21	$0.0192(8)$	$0.0378(13)$	$0.0218(9)$	$0.0020(8)$	$0.0129(8)$	$0.0004(8)$
C25	$0.0263(10)$	$0.0380(13)$	$0.0365(11)$	$0.0115(9)$	$0.0210(9)$	$0.0139(9)$
C24	$0.0270(10)$	$0.0422(14)$	$0.0292(10)$	$-0.0009(10)$	$0.0102(9)$	$-0.0066(10)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.0396(19)$	$\mathrm{C} 22-\mathrm{C} 25$	$1.498(3)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$2.0396(19)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.395(3)$
$\mathrm{Ni} 1-\mathrm{N} 10$	$2.1475(17)$	$\mathrm{C} 20-\mathrm{H} 20$	0.9300
$\mathrm{Ni} 1-\mathrm{N} 10^{\mathrm{i}}$	$2.1475(17)$	$\mathrm{C} 11-\mathrm{C} 14$	$1.502(3)$

$\mathrm{Ni} 1-\mathrm{N} 20$	2.1983 (15)
Ni1-N20 ${ }^{\text {i }}$	2.1983 (15)
N20-C23	1.335 (3)
N20-C20	1.345 (3)
N10-C10	1.334 (3)
N10-C13	1.339 (3)
C1-N1	1.113 (3)
C1-O1	1.238 (3)
N21-C22	1.339 (3)
N21-C21	1.341 (3)
C10-C11	1.398 (3)
C10-H10	0.9300
C23-C22	1.400 (3)
C23-H23	0.9300
N11-C11	1.334 (3)
N11-C12	1.347 (3)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{N} 1$	180.00 (13)
N1- ${ }^{\text {i }}$ Ni1- N 10	89.86 (7)
N1—Ni1-N10	90.14 (7)
N1 ${ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{N} 10^{\mathrm{i}}$	90.14 (7)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 10^{\text {i }}$	89.86 (7)
N10-Ni1-N10 ${ }^{\text {i }}$	180.000
N1 ${ }^{\text {i }}$-Ni1- N 20	89.74 (7)
N1-Ni1-N20	90.26 (7)
N10-Ni1-N20	88.72 (6)
N10i-Ni1-N20	91.28 (6)
N1 ${ }^{\text {i }}$ - $\mathrm{Ni1}-\mathrm{N} 20^{\text {i }}$	90.26 (7)
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 20^{\text {i }}$	89.74 (7)
N10-Ni1-N20	91.28 (6)
N10- ${ }^{\text {i }}$ - $11-\mathrm{N} 20^{\text {i }}$	88.72 (6)
N20-Ni1-N20 ${ }^{\text {i }}$	180.000
C23-N20-C20	116.73 (16)
C23-N20-Ni1	122.62 (13)
C20-N20-Ni1	120.64 (14)
C10-N10-C13	116.95 (19)
C10-N10-Ni1	122.49 (14)
C13-N10-Ni1	120.51 (15)
N1-C1-O1	179.7 (2)
C1-N1-Ni1	167.16 (17)
C22-N21-C21	117.19 (17)
N10-C10-C11	121.7 (2)
N10-C10-H10	119.2
C11-C10-H10	119.2
N20-C23-C22	122.01 (19)
N20-C23-H23	119.0
C22-C23-H23	119.0
C11-N11-C12	117.2 (2)
N21-C22-C23	121.1 (2)

C13-C12	1.389 (3)
C13-H13	0.9300
C12-C15	1.507 (3)
C14-H14A	0.9600
C14-H14B	0.9600
C14-H14C	0.9600
C15-H15A	0.9600
C15-H15B	0.9600
C15-H15C	0.9600
C21-C24	1.497 (3)
C25-H25A	0.9600
C25-H25B	0.9600
C25-H25C	0.9600
C24-H24A	0.9600
C24-H24B	0.9600
C24-H24C	0.9600
N11-C11-C10	121.2 (2)
N11-C11-C14	117.3 (2)
C10-C11-C14	121.5 (2)
N10-C13-C12	121.8 (2)
N10-C13-H13	119.1
C12-C13-H13	119.1
N11-C12-C13	121.1 (2)
N11-C12-C15	117.1 (2)
C13-C12-C15	121.7 (2)
C11-C14-H14A	109.5
C11-C14-H14B	109.5
H14A-C14-H14B	109.5
C11-C14-H14C	109.5
H14A-C14-H14C	109.5
H14B-C14-H14C	109.5
C12-C15-H15A	109.5
C12-C15-H15B	109.5
H15A-C15-H15B	109.5
C12-C15-H15C	109.5
H15A-C15-H15C	109.5
H15B-C15-H15C	109.5
N21-C21-C20	121.5 (2)
N21-C21-C24	117.32 (18)
C20-C21-C24	121.1 (2)
C22-C25-H25A	109.5
C22-C25-H25B	109.5
H25A-C25-H25B	109.5
C22-C25-H25C	109.5
H25A-C25-H25C	109.5
H25B-C25-H25C	109.5
$\mathrm{C} 21-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~A}$	109.5
C21-C24-H24B	109.5

supplementary materials

$\mathrm{N} 21-\mathrm{C} 22-\mathrm{C} 25$	$117.86(17)$	$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{~B}$	109.5
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 25$	$121.1(2)$	$\mathrm{C} 21-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109.5
$\mathrm{~N} 20-\mathrm{C} 20-\mathrm{C} 21$	$121.5(2)$	$\mathrm{H} 24 \mathrm{~A}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109.5
$\mathrm{~N} 20-\mathrm{C} 20-\mathrm{H} 20$	119.3	$\mathrm{H} 24 \mathrm{~B}-\mathrm{C} 24-\mathrm{H} 24 \mathrm{C}$	109.5
$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20$	119.3		
Symmetry code: $(\mathrm{i})-x+3 / 2,-y+3 / 2,-z+1$.			

